ANALYSIS OF ZERO-LEVEL SAMPLE PADDING OF AAC AND WMA ENCODERS

by

JEREMY YANCEY

B.S., University of Colorado Denver, 2017

A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Master of Science Recording Arts Program

2019

This thesis for the Master of Science degree by

Jeremy Yancey

has been approved for the

Recording Arts Program

by

Catalin Grigoras, Chair

Jeff Smith

Cole Whitecotton

Date: December 14, 2019

Yancey, Jeremy (M.S., Recording Arts Program)

Analysis of Zero-Level Sample Padding in AAC and WMA Encoders

Thesis directed by Associate Professor Catalin Grigoras

ABSTRACT

During the course of the audio compression process, the codec that is used will pad the beginning of an audio file with zero-level samples. Upon playback, the zero-level samples (ZLS) are read back as absolute silence. The number of ZLS varies by which codec was used, but typically each re-compression of a file will add more ZLS to the beginning of the file. By creating multiple generations of audio files using various audio editors, this this paper hopes to shed insight of how each audio editor/codec pads files over the course of several recompressions. The purpose of the study is to observe and note the differences in ZLS between the different codecs and audio editors across several generations of recompression and note any unique patterns across the ZLS that are added between generations within the same audio editor. In addition, the paper aims to gain a better understanding of how each program and generation affect the ZLS compared to the original audio file. With the study, we hope to use the data collected to assist in testing regarding the authenticity of an original file and use the data alongside other testing methods to determine how many times a file has been edited, recompressed, and which audio editor the edits were made in.

The form and content of this abstract are approved. I recommend its publication.

Approved: Catalin Grigoras

iii

This is dedicated to my family and friends. Thank you, truly, for your unconditional love.

ACKNOWLEDGEMENTS

I'd like to thank Jeff Smith and Catalin Grigoras for their passion for teaching. This has easily been the most fun, challenging, and rewarding two and a half years of my life. You have both continued to inspire my interest in forensics and my learning as a whole. I am thankful for the National Center for Media Forensics for the opportunities and experiences it has gifted me, as well as the people that it has introduced into my life. I am forever grateful.

TABLE OF CONTENTS

CHAPTER

I. INTRODUCTION
Terminology1
Lossy Compression in Audio2
A Brief History of the WMA Codec2
A Brief History of the AAC Codec2
Zero-Level Sample Padding3
Purpose of the Study4
II. MATERIALS AND METHODS
III. RESULTS
Adobe Audition CC 2018 AAC10
Adobe Audition CC 2018 WMA11
Audacity AAC12
Audacity WMA13
FFMPEG AAC14
FFMPEG WMA15
Freemake Audio AAC16

Freemake Audio WMA17
Garageband AAC18
Apple iTunes AAC19
Switch Converter AAC20
Switch Converter WMA21
Studio One AAC22
All AAC Codecs
All WMA Codecs24
IV. POST-TESTING ANALYSIS25
Initial Device and Format29
V. CONCLUSION
VI. FUTURE RESEARCH
REFERENCES/BIBLIOGRAPHY

LIST OF TABLES

1: Terminology1
2: Programs Used
3: Initial Device Data
3.1: Adobe Audition CC 2018 AAC10
3.2: Adobe Audition CC 2018 WMA11
3.3: Audacity AAC 12
3.4: Audacity WMA 13
3.5: FFMPEG AAC14
3.6: FFMPEG WMA15
3.7: Freemake Audio AAC16
3.8: Freemake Audio WMA17
3.9: Garageband AAC 18
3.10: Apple iTunes AAC19
3.11: Switch Converter AAC
3.12: Switch Converter WMA
3.13: Studio One AAC

LIST OF FIGURES

FIGURE
3.1: Adobe Audition CC 2018 AAC – Device Averages10
3.2 Adobe Audition CC 2018 WMA – Device Averages11
3.3: Audacity AAC – Device Averages
3.4: Audacity WMA – Device Averages
3.5: FFMPEG AAC – Device Averages14
3.6: FFMPEG WMA – Device Averages15
3.7: Freemake Audio AAC – Device Averages16
3.8: Freemake Audio WMA – Device Averages17
3.9: Garageband AAC – Device Averages
3.10: Apple iTunes AAC – Device Averages
3.11: Switch Converter AAC – Device Averages
3.12: Switch Converter WMA – Device Averages
3.13: Studio One AAC – Device Averages
3.14: All AAC Codecs
3.15: All WMA Codecs
4.1: Table Results for Adobe Audition CC 2018

4.2: Table Results for FFMPEG AAC2	7
5.1: Decoded Text from Hex Data for File Re-compressed in Apple iTunes	1
5.2: Spectrogram of an Original Audio File Recorded on a Tascam-DR05	2
5.3: Spectrogram of an Audio File that has been Re-compressed Using Freemake Audio	2

CHAPTER I

INTRODUCTION

Terminology

Table 1: Terminology

Term	Definition
ZLS	Zero-level Samples.
Generation	The number of times an audio files has been re-
	compressed.
Average	Average amount of ZLS added for that
	generation.
Minimum	The minimum amount of ZLS that were
	detected among all files.
Maximum	The maximum amount of ZLS that were
	detected among all files.
Mean	The average ZLS among all files.
Median	The median value of ZLS between all files.
Mode	The number of ZLS that occurred most often.
Standard Deviation	A quantity calculated to indicate the extent of
	deviation for the ZLS of the files as a whole.

Lossy Compression in Audio

Lossy compression is a class of data encoding that partially discards data in the original content, resulting in reduced data size for storage, handling, and transmitting, at the cost of fidelity. Audio can often be compressed at 10:1 with almost imperceptible loss of quality, resulting in file sizes that are 10% of the original. The algorithms that are involved in the compression rely on psychoacoustics to reduce or to eliminate information that the algorithm deems to be redundant, taking advantage of the limitations of human hearing to create a new, smaller audio file with imperceptible change.

A Brief History of the WMA Codec

The first WMA codec was created by the Windows Media team at Microsoft based on the early work of Brazilian engineer and signal processor, Henrique S. Malvar. The team at Microsoft made claims that the WMA codec could produce file sizes of half that of the widely popular MP3 codec while maintaining equivalent quality of the audio file. The claim was rejected by some. Newer versions of WMA became available which included Windows Media Audio 2 in 1999, Windows Media Audio 7 in 2000, Windows Media Audio 8 in 2001, and Windows Media Audio 9 in 2003. Microsoft first announced its plans to license WMA technology to third parties in 1999. Early versions of Windows Media Player were able to play WMA files, but backwards compatibility of the codecs was not introduced until version 9.0.

A Brief History of the AAC Codec

AAC was designed to be the successor of the MP3 format, achieving better sound quality at the same bit rate. In 1972, electrical engineer Nasor Ahmed proposed the discrete cosine transform (DCT), a type of transform coding for lossy compression. This led to the development of the modified discrete cosine transform (MDCT), proposed by J. P. Princen, A. W. Johnson and A. B. Bradley in 1987. AAC uses a purely MDCT algorithm, giving it higher compression efficiency than MP3. AAC was first introduced in 1997 and made significant improvements over the MP3 format including, higher sample rate, higher efficiency and simpler filter bank, higher coding efficiency for stationary signals, higher coding accuracy for transient signals, and much better handling of audio frequencies above 16 kHz.

Zero-Level Sample Padding

Part of the coding/decoding process for lossy compression formats is to pad the newly created files with zero-level samples (ZLS). When read back, these ZLS are interpreted as absolute silence in the file. Depending on which codec and file specifications were used, there is a variable amount of ZLS that are added. Generally, each time a file is compressed, more ZLS are added to the file, resulting in a file that is longer than the original, with a greater period of silence at the beginning of the file.

A number of causes have been noted as to why this occurs when a file is compressed¹. Digital audio files are processed in blocks which are processed based on a number of audio samples. The algorithm of the codec cannot start until a signal buffer of samples has been filled. This can be required along the length of the transmission chain, leading to the first cause for the need of ZLS in the audio file.

The second cause for ZLS is the use of frequency-domain processing. All signals have to go through a filter-bank. Any encoder/decoder analysis and synthesis filter-bank system leads to a signal delay of samples.

The third cause of ZLS is the need for an amount of time for a look-ahead time in the signal. Some encoders require this for the algorithm to decide and implement strategies that are

needed for the internal processing of the data. The actual processing of a block of audio data takes time. Real-time hardware implementations mostly choose to add another delay of samples to give the algorithm more time to make decisions.

Purpose of the Study

The purpose of the study is to observe and note the differences in ZLS between the different codecs and audio editors across several generations of recompression. The paper hopes to shed insight to see if there are any unique patterns across the ZLS that are added between generations within the same audio editor and gain a better understanding of how each program and generation affect the ZLS compared to the original audio file. With the study, we hope to use the data collected to assist in testing regarding the authenticity of an original file and use the data alongside other testing methods to determine how many times a file has been edited, recompressed, and which audio editor the edits were made in.

CHAPTER II

MATERIALS AND METHODS

The procedure of the study was to take various audio recordings, record 30 second audio files, recompress the audio files using various audio editors, and then analyze the amount of ZLS that were added to the beginning of the file. The recordings that were used for analysis originated from the following devices:

Zoom H-1n Tascam DR-05 Tascam DR-22 Olympus Ws-852 Olympus Ws-802

iPhone Xs Voice Memos

These devices were chosen as they represented audio recorders that were easily accessible to the general public. The devices each had different saved file types, with the exception of the Tascam Dr-05 and Tascam-Dr22 which both saved as mono .WAV files. The Zoom H-1n saved a stereo .MP3 file, the Olympus Ws-852 saved a stereo .WAV file, The Olympus Ws-802 saved a mono .WMA file, and the iPhone voice memo saved a mono .AAC file. This was done to see if there were any differences between in the amount of ZLS added based on the originating file format.

Each device recorded twelve (12) files. The files were recorded in 3 different ambient environments:

(4) Loud music

(4) Moderate noise

(4) Low level ambient noise

Once all files were recorded and gathered, the next step in the procedure was to recompress the files. The files were each brought into the audio program under examination and compressed with the default settings for both (if applicable) WMA and AAC formats. The newly created file was then brought back into the program and the steps were repeated. This process was continued until a 4th new generation of the original audio file was created.

Once the new files had been created, they were analyzed by a MATLAB script that detected and reported back the number of zero-level samples in each channel before there was any change in signal. All audio files were recorded at 16bit/128kbps with the exception of Apple Voice Memos on the iPhone Xs which was recorded at 64kbps.

The following programs were used to create the files for analysis:

Program	Program Version	AAC Codec Tested	WMA Codec
			Tested
Adobe Audition CC	11.1.1.3	Yes	Yes
2018			
Audacity	2.2.2	Yes	Yes
Ffmpeg	4.2.1	Yes	Yes
Freemake Audio	1.1.8.19	Yes	Yes

Table 2: Programs Used

Garageband	10.0.3	Yes	N/A
iTunes	12.10.2.3	Yes	N/A
Studio One	4.5.4.54067	Yes	N/A
Switch Converter	7.33	Yes	Yes

The only settings that were modified upon exporting and compressing the file was the bitrate. The bitrate settings were changed to 128kbps to be consistent with the original settings of the audio recording devices, minus the iPhone Voice Memos.

CHAPTER III

RESULTS

The following section describes the results from the data collection. For each software that was tested, there is a table that includes, the average, minimum, maximum, median, mode, and standard deviation of zero-level samples for all devices tested within that software, for each new generation created. Additionally, there is a graph that shows the average amount of zero-level samples across the generations for each device that was tested within the program. The following table displays the devices used, along with the original file format, minimum zero-level samples of the original files, maximum, average, and standard deviation.

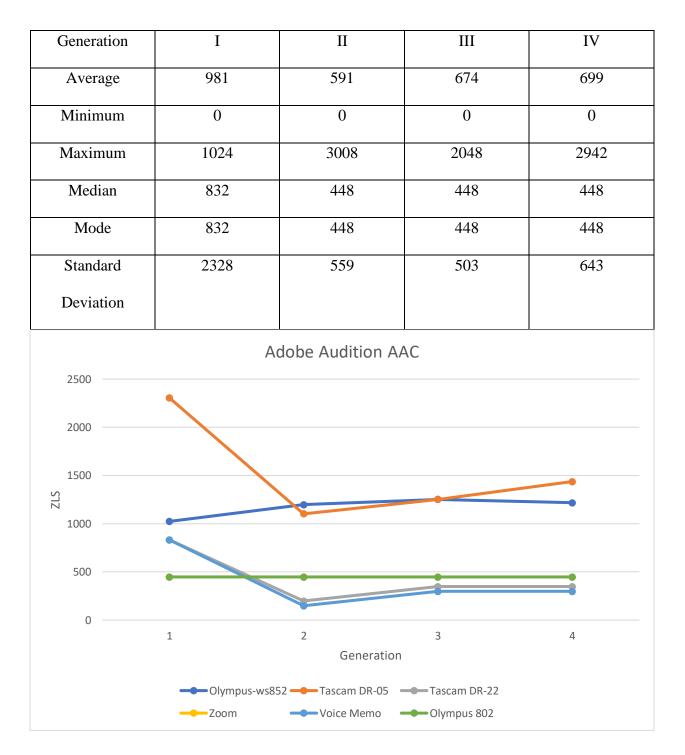

Device	Format	Minimum	Maximum	Average	Standard
					Deviation
Zoom H-1n	.WAV	138	8700	2916	2814
Tascam DR-	.WAV	131	12446	5620	4651
05					
Tascam DR-	.WAV	0	0	0	0
22					
Olympus Ws-	.MP3	348	32957	10216	12411
852					

Table 3: Initial Device Data

Table 3 Continued

Device	Format	Minimum	Maximum	Average	Standard
					Deviation
Olympus Ws-	.WMA	0	0	0	0
802					
iPhone Xs	.AAC	1984	1984	1984	0
Voice					
Memos					

Adobe Audition CC 2018 AAC

Table 3.1: Adobe Audition CC 2018 AAC

Figure 3.1: Adobe Audition CC 2018 AAC – Device Averages

Adobe Audition CC 2018 WMA

Table 3.2: Adobe Audition Co	C 2018 WMA
------------------------------	------------

Generation	Ι	II	III	IV		
Average	0	0	0	0		
Minimum	0	0	0	0		
Maximum	0	0	0	0		
Mean	0	0	0	0		
Median	0	0	0	0		
Mode	0	0	0	0		
Standard	0	0	0	0		
Deviation						
	Ac	lobe Audition W	MA			
1						
1						
1						
1						
1						
1						
0						
0						
0						
0						
1		2	3	4		
		Generation				

Figure 3.2 Adobe Audition CC 2018 WMA – Device Averages

Audacity AAC

Table 3.3: Audacity AAC

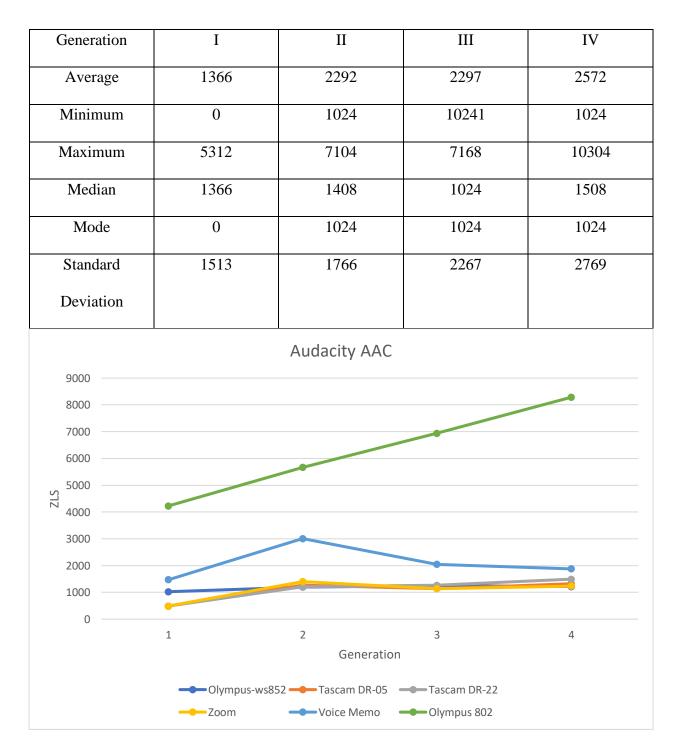


Figure 3.3: Audacity AAC – Device Averages

Audacity WMA

Table 3.4: Audacity WMA

Figure 3.4: Audacity WMA – Device Averages

FFMPEG AAC

Table 3.5: FFMPEG AAC

Figure 3.5: FFMPEG AAC – Device Averages

FFMPEG WMA

Table 3.6: FFMPEG WMA

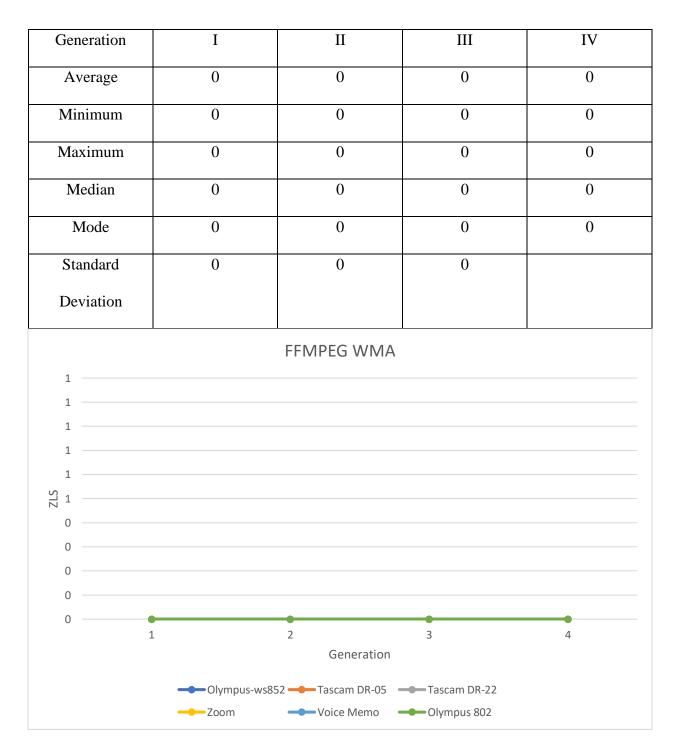


Figure 3.6: FFMPEG WMA – Device Averages

Freemake Audio AAC

Table 3.7: Freemake Audio AAC

Generation	Ι	II	III	IV		
Average	1786	5925	9916	13943		
Minimum	0	4094	7166	11198		
Maximum	18047	20095	22399	23423		
Median	0	4991	9024	13188		
Mode	0	4926	9022	16064		
Standard	2922	2395	2251	1908		
Deviation						
		Freemake AAC				
18000						
16000						
14000						
12000						
10000						
2LS 8000						
6000						
4000						
2000						
0						
č	1	2	3	4		
		Generation	1			
	Olympus-ws85	52 —— Tascam DR-05 •	Tascam DR-22			
	Zoom	Voice Memo	Olympus 802			

Figure 3.7: Freemake Audio AAC – Device Averages

Freemake Audio WMA

Table 3.8: Freemake Audio WMA

Generation	Ι	II	III	IV		
Average	357	3959	7723	12891		
Minimum	0	0	4096	1892		
Maximum	2395	18909	21467	81912		
Median	0	3808	7904	12032		
Mode	0	0	4096	12032		
Standard	560	3814	3472	10667		
Deviation						
		Freemake WMA	Δ.	I		
18000						
16000						
14000						
12000						
10000						
00001 ZTS						
6000						
4000						
2000			-			
0						
	1	2 Generation	3 1	4		
	Olympus-ws8	52 —— Tascam DR-05	Tascam DR-22			
	Zoom	Voice Memo	Olympus 802			

Figure 3.8: Freemake Audio WMA – Device Averages

Garageband AAC

Table 3.9: Garageband AAC

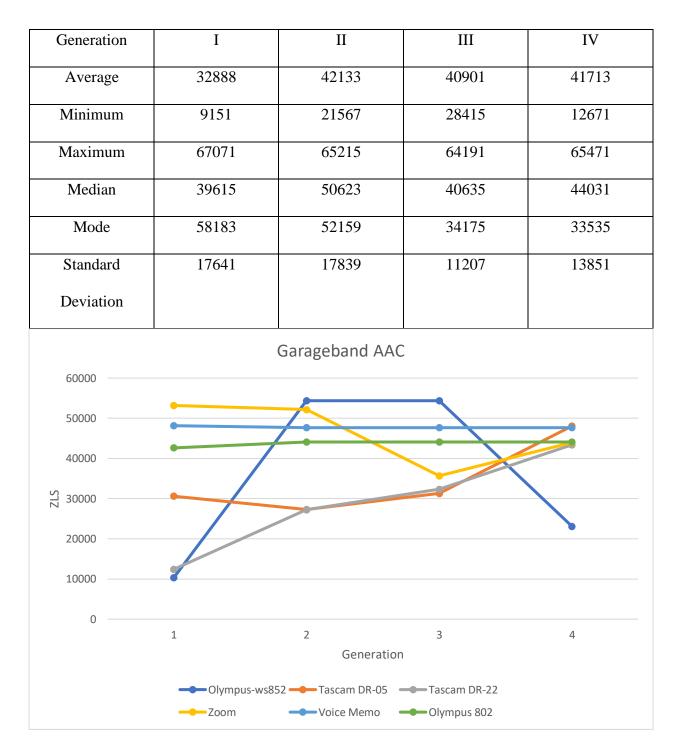


Figure 3.9: Garageband AAC – Device Averages

Apple iTunes AAC

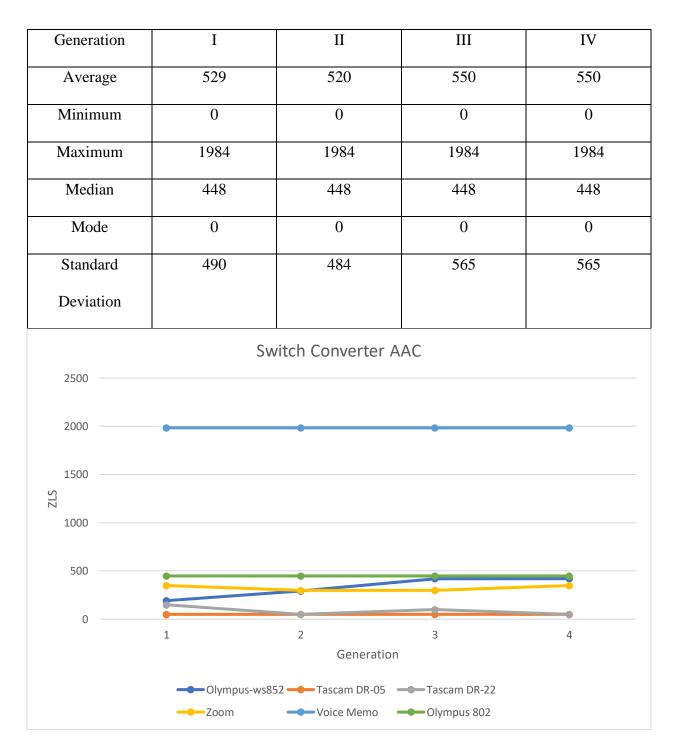

Table 3.10: Apple iTunes AAC

Figure 3.10: Apple iTunes AAC – Device Averages

Switch Converter AAC

Table 3.11: Switch Converter AAC

Figure 3.11: Switch Converter AAC – Device Averages

Switch Converter WMA

Table 3.12: Switch Converter WMA

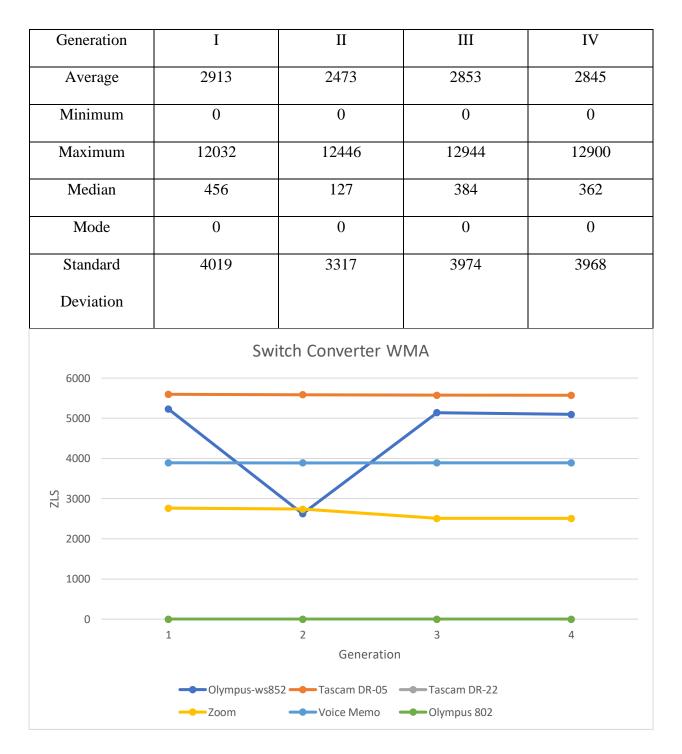


Figure 3.12: Switch Converter WMA – Device Averages

Studio One AAC

Table 3.13: Studio One AAC

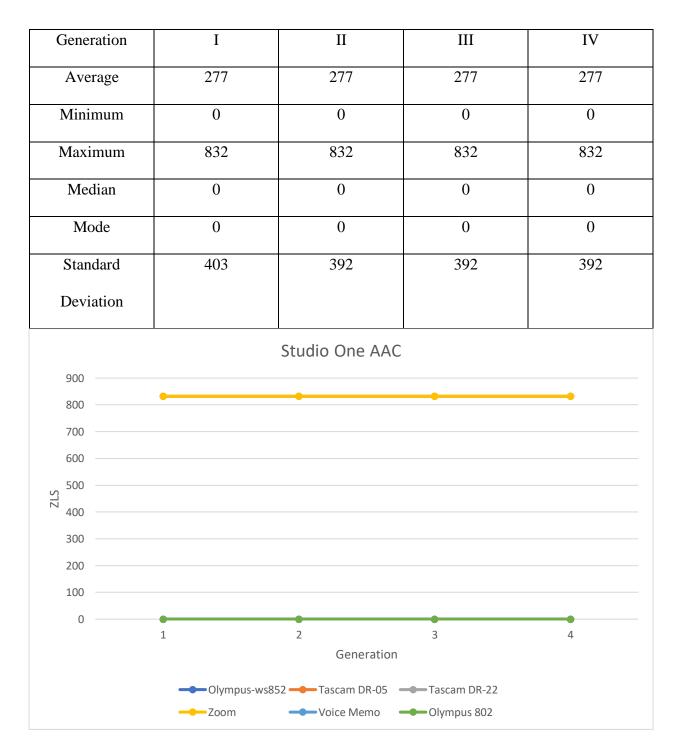


Figure 3.13: Studio One AAC – Device Averages

All AAC Codecs

This section compiles all the data from all the audio editing programs where the .AAC codec was used.

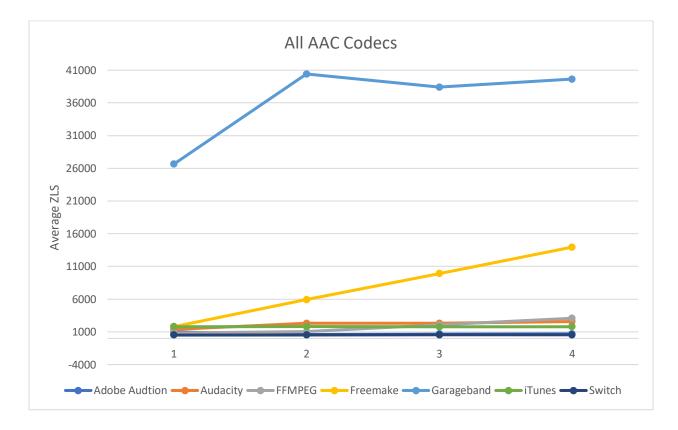


Figure 3.14: All AAC Codecs

All WMA Codecs

This section compiles all the data from all the audio editing programs where the .WMA codec was used.

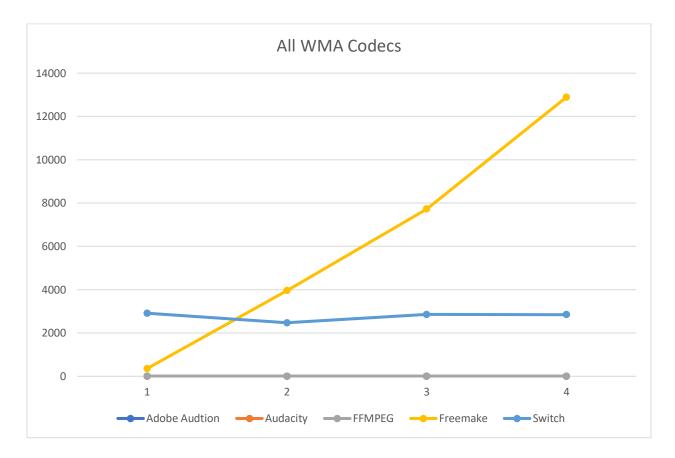


Figure 3.15: All WMA Codecs

CHAPTER IV

POST-TESTING ANALYSIS

After analyzing the number of zero-level samples for the different audio devices, audio editors, and audio generations, there are patterns that are noted for several of the different programs. There were not always expected linear growth in the zero-level samples when examining the averages across device and program audio generations as a whole, but when looking at an individual audio file and its generations in a specific program, there are several repeated sequence numbers. In some programs, this made analyzing the sequences show more of a pattern rather than when only examining the average across generations for all of the audio files.

An example of this would be the files that were re-compressed in Adobe Audition CC 2018. When examining the averages from the line graph, there does not appear to be a pattern in the zero-level samples that are added. When looking at the table that the graph is pulling data from, with the exception of one device (Tascam DR-05), every file had either 0, 448, or 832 zero-level samples added.

	T						
	Tascam DR-22						
Gen	Loud Music 1		Loud Music 3				
2	832	832	832				
3	448	0	0				
4	448	0	448				
5	448	0	448				
	Zoom						
Gen	Loud Music 1	Loud Music 2	Loud Music 3				
2	448	448	448				
3	448	448	448				
4	448	448	448				
5	448	448	448				
	Voice Memo						
Gen	Loud Music 1	Loud Music 2	Loud Music 3				
2	832	832	832				
3	448	0	0				
4	448	0	448				
5	448	0	448				
	Olympus 802						
	Loud Music 1	Loud Music 2	Loud Music 3				
2	448	448	448				
3	448	448	448				
4	448	448	448				
5	448	448 448					
			I				

Figure 4.1: Table Results for Adobe Audition CC 2018

When examining the .AAC files made in FFMPEG, with the exception of the Olympus Ws-802, each device had no new zero-level samples added in the first two generations. In the last two generations, there were exactly 1,024 and 2,048 zero-level in total. The Olympus Ws-802

added 1,024 zero-level samples each generation, but had a 4,928 zero-level samples in each file of the first re-compression, rather than zero like the other devices.

	Zoom				
Gen	LM1	LM2	LM3		
2	0	0	0		
3	0	0	0		
4	1024	1024	1024		
5	2048	2048	2048		

	Voice Memo		
Gen	LM1	LM2	LM3
2	0	0	0
3	0	0	0
4	1024	1024	1024
5	2048	2048	2048

	Olympus 802		
	LM1	LM2	LM3
2	4928	4928	4928
3	5952	5952	5952
4	6976	6976	6976
5	8000	8000	8000

Figure 4.2: Table Results for FFMPEG AAC

There were multiple programs that did not add any zeros with each subsequent generation of re-compression. The programs are as follows:

- Freemake Audio (AAC)
- Freemake Audio (WMA)
- FFMPEG (WMA)

Programs did not add any zero level samples during WMA encoding:

- Adobe Audition CC 2018 (WMA)
- Audacity (WMA)
- FFMPEG (WMA)

An explanation for both Audacity and FFMPEG both not adding any zero-level samples is that they use the same encoding. Encoding as a .WMA file is not default with Audacity and an extension of FFMPEG must be installed as an add-on to the program before encoding as a .WMA file is possible.

Programs where there was little change throughout generations:

- Apple iTunes (AAC)
- Switch Converter (AAC)
- Switch Converter (WMA)

Of the 13 tests conducted, only 2 had no discernable patterns in either the tables or averages across all devices and generations. The programs where there were no discernable patterns were as follows:

• Audacity (AAC)

• Garageband (AAC)

Initial Device and Format

It could be expected that the program being used and the codec would have the most impact on the number of zero-level samples that are added to the different generation of audio files. While this seemed to be the case for many of the different programs, the different devices seemed to behave differently from each other in some programs depending on what the original audio file format was. In some programs, the Olympus Ws-802 which generates .WMA file had significantly more zero-level samples added in Audacity (AAC) and FFMPEG (AAC). When testing the Olympus Ws-802 in Switch Converter (WMA), none of the files had any zero-level samples added.

When looking at the averages for Garageband, there are no devices that follow a pattern close to any other device. Some devices increase throughout the generations, while other increase and decrease without any pattern.

CHAPTER V

CONCLUSION

The results of previous studies² done on other audio codecs have shown that there is not always a linear growth in the number of zero-level samples that are added to the generations of an audio file after re-compression. The results of this study are similar. Some programs behaved as expected and added zero-level samples to each generation, some programs added an initial number during the first generation of re-compression and then kept relatively the same amount in following generations, and others did not introduce and zero-level samples as all. Because of this, the analysis of zero-level samples on its own could not be used to determine the authenticity of an audio file or even the generation.

There were patterns or numbers that were seen throughout testing in certain programs that were of note. If there was not always a linear growth in the number of zero-level samples detected, there were times where the same number of zero-level samples that were added appeared.

An analysis of the zero-level samples could be used in addition to other means of authenticity testing to assist in verifying the results. The testing could be used in conjunction with tests like an analysis of a file's metadata. In figure 6, there is decoded text from the hex data of a file that has been compressed in Apple iTunes. By testing the zero-level samples of the audio file and with the information from the hex code analysis, the zero-level samples can serve as second confirmation that the file is not authentic.

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF	Decoded text
000017C0	30	00	05	EC	AE	00	06	1C	D2	00	06	4C	C3	00	06	7C	0ì⊗ÒLÃ
000017D0	65	00	06	AC	61	00	06	DC	34	00	07	0C	09	00	07	3B	eaÜ4;
000017E0	FF	00	07	6B	F2	00	07	9B	C3	00	07	СВ	EF	00	07	FB	ÿkò>ÃËïû
000017F0	99	00	08	2B	65	00	08	5B	46	00	08	8B	36	00	08	BB	™+e[F<6»
00001800	1E	00	08	EA	F4	00	09	1B	29	00	09	4A	ED	00	09	7A	êô)Jíz
00001810	AD	00	09	AA	92	00	09	DA	76	00	AO	0A	88	00	AO	ЗA	ª′Úv^:
00001820	ЗA	00	0A	6A	2D	00	0A	99	FA	00	A0	C9	DE	00	A0	F9	:j–™úÉÞù
00001830	C8	00	0B	29	BF	00	0B	59	8D	00	0B	89	6F	00	0B	B9	È)¿Y‰0¹
00001840	9B	00	0B	E9	32	00	0C	19	16	00	0C	48	FB	00	00	00	>é2Hû
00001850	FA	75	64	74	61	00	00	00	F2	6D	65	74	61	00	00	00	úudtaòmeta
00001860	00	00	00	00	22	68	64	6C	72	00	00	00	00	00	00	00	"hdlr
00001870	00	6D	64	69	72	61	70	70	6C	00	00	00	00	00	00	00	.mdirappl
00001880	00	00	00	00	00	00	C4	69	6C	73	74	00	00	00	BC	2D	Äilst4-
00001890	2D	2D	2D	00	00	00	1C	6D	65	61	6E	00	00	00	00	63	meanc
000018A0	6F	6D	2E	61	70	70	6C	65	2E	69	54	75	6E	65	73	00	om.apple.iTunes.
000018B0	00	00	14	6E	61	6D	65	00	00	00	00	69	54	75	6E	53	nameiTunS
000018C0	4D	50	42	00	00	00	84	64	61	74	61	00	00	00	01	00	MPB,data
000018D0	00	00	00	20	30	30	30	30	30	30	30	30	20	30	30	30	00000000 000
000018E0	30	30	38	34	30	20	30	30	30	30	30	30	34	35	20	30	00840 00000045 0
000018F0	30	30	30	30	30	30	30	30	30	31	34	46	46	37	42	20	00000000014FF7B
00001900	30	30	30	30	30	30	30	30	20	30	30	30	30	30	30	30	0000000 0000000
00001910	30	20	30	30	30	30	30	30	30	30	20	30	30	30	30	30	0 0000000 00000
00001920	30	30	30	20	30	30	30	30	30	30	30	30	20	30	30	30	000 0000000 000
00001930	30	30	30	30	30	20	30	30	30	30	30	30	30	30	20	30	00000 0000000 0
00001940	30	30	30	30	30	30	30	00	00	C6	B1	66	72	65	65	00	0000000Ʊfree.
00001950	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00001960	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00001970	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00001980	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Figure 5.1: Decoded Text from Hex Data for File Re-compressed in Apple iTunes

Additionally, tests such as the analysis of the frequency spectrograms of an audio file can be done and its results can be confirmed with the zero-level sample analysis. In figure 6a, there is a frequency spectrogram of an original audio file recorded on a Tascam DR-05. The frequencies span the range of the audible spectrum up to 20 kHz. In figure 6b, there is a spectrogram of a second-generation file that has a noticeable frequency cutoff above 16 kHz. This is a characteristic of compression and indicative that a file has been re-compressed. If the file that is respective of this spectrogram is found to have zero-level samples at the beginning of the file, it can help as a confirmation that the file has been re-compressed and is not authentic.

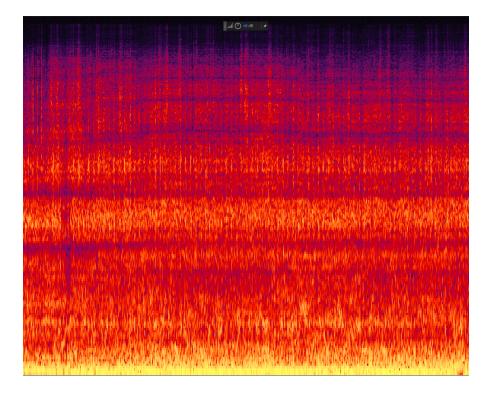


Figure 5.2: Spectrogram of an Original Audio File Recorded on a Tascam-DR05

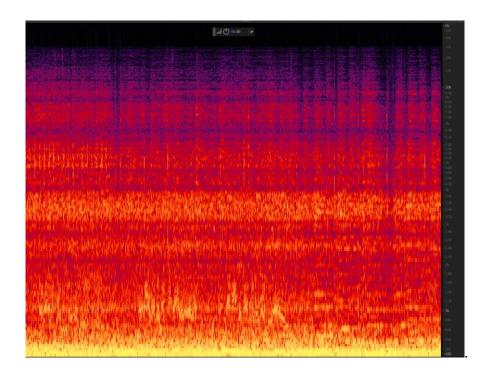


Figure 5.3: Spectrogram of an Audio File that has been Re-compressed Using Freemake

Audio

CHAPTER VI

FUTURE RESEARCH

Additional research that examines how different codecs affect the number of zero-level samples would be helpful in building a database. There are several other audio codecs that have not had testing at this point such as .OGG, ALAC, FLAC, AC3, etc. While the research from this study shows that some audio programs add a linear number of zero-level samples, that is not always the case. Combined with other testing methods such as looking at the meta data of the audio file, this data could assist in determining the authenticity of an audio file. However, the testing could not stand on its own as a means of authenticity. There were some audio programs that did not add any zero-level samples, and for this reason examining the zero-level samples from this program would not yield results.

The study also showed that there was a variance in the number of zero-level samples added based on the device and the original format that it was created in. A proposed test would be to examine the zero-level samples coming from a device that can record audio files in numerous different formats. For example, having the same device record in mono and stereo, recording in different sample rates, and recording in different formats such as .WAV, .MP3, WMA, or others if the device supports numerous different file formats. By testing this, it can be determined what effect different settings or file formats within the same device have on the number of zero-level samples that are added.

REFERENCES/BIBLIOGRAPHY

²Berman, Josh. "ANALYSIS OF ZERO-LEVEL SAMPLE PADDING OF VARIOUS MP3 CODECS." *University of Colorado Denver*, 2013.

Grigoras, Catalin, and Jeff M. Smith. "Forensic Analysis of AAC Encoding on Apple IPhone Voice Memos Recordings." *Audio Engineering Society*, 18 June 2019.

¹Schroeder, Ernst F., and Johannes Boehm. "Original File Length (OFL) for mp3, mp3PRO and Other Audio Codecs." *Audio Engineering Society*, 22 Mar. 2003.