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ABSTRACT

Forensic audio examiners often use quantitative measures, such as cross-correlation
computations, of recorded gunshot sounds in an attempt to assess the number of different
firearms that were fired and to determine which gunshot events are consistent with having
been fired by the same firearm. When used in conjunction with ballistics evidence gathered at
the scene, conclusions drawn from such analyses can assist in establishing a timeline of events
and answer questions such as "who fired first?” Forensic recordings are typically made in
uncontrolled environments and are of low quality compared to recordings made in controlled
environments (such as recording studios) using high-quality microphones and uncompressed
audio formats with high sampling rates and wide dynamic range. The relatively poor quality,
limited bandwidth, and lossy compression artifacts in forensic recordings, combined with
uncontrolled acoustic conditions, can negatively affect the reliability of quantitative analyses.
This thesis examines the effects of bandwidth reduction on cross-correlation computations of
recorded gunshot sounds captured in a controlled environment with a high-quality recording
system.
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INTRODUCTION
Gunshot Analysis
The forensic analysis of recorded gunshot sounds, while requested less frequently than
audio enhancement and audio authentication, can provide critical information during an
investigation of criminal activity or of actions related to civil litigation. With the proliferation of
mobile devices and law enforcement body cameras, and the widespread adoption of home and
business video surveillance systems, the likelihood that gunshots occurring in urban and rural
environments will be recorded has increased. And with that increase comes greater
opportunity for analysis.
Requests for recorded gunshot analysis typically center on one (1) or more of the
following questions [1]:
e Are these sounds gunshots?
e How many gunshots were there?
e How many firearms were there?
e How many and which gunshots did each firearm discharge?
e Who fired first?
e What are the firearm types/calibers?
e Where was each shooter positioned?
e What s the timing between gunshots?
Various techniques may be employed to analyze the recorded audio and to draw
conclusions to address the questions posed above. These techniques may include pre-

processing/filtering of signals, critical listening, time-domain (waveform) analysis,



energy/envelope analysis, frequency-domain analysis, cross-correlation computations, and time
difference of arrival (TDOA) [1]. The focus of the present research and thesis is on the use of
cross-correlation computations in the analysis of recorded gunshot sounds and does not
directly address the other listed techniques.

Prior Research
Gunshot Acoustics

The mechanisms of firearms and the acoustical characteristics of their discharges have
been covered by several research papers and presentations aimed at the audio forensics and
signal processing fields. Many of these papers/presentations have resulted from the work of Dr.
Robert C. Maher (Montana State University, Department of Electrical and Computer
Engineering) and his colleagues.

Maher and Shaw [2-4] have previously discussed the principle mechanics of a gunshot
and placed these elements in context with the acoustical signals which are produced by the
event. They also identified limitations of capturing gunshots in “real world” conditions with
less-than-ideal microphone and recording systems.

Figure 1 provides an acoustical, time-domain overview of a .308 caliber rifle firing a
supersonic bullet (i.e., faster than the speed of sound) and recorded by two (2) professional-
guality microphones at different locations in a controlled environment [4]. The supersonic
bullet produces a shock wave which is followed by its ground reflection, both of which arrive at
the microphones prior to the muzzle blast, which is traveling at the speed of sound. A ground
reflection of the muzzle blast then ends the sequence. In the case of a bullet traveling at less

than the speed of sound, no shock wave (or reflected shock wave) would be present.
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Figure 1 — Time-aligned waveforms for a 2-channel recording of a supersonic bullet fired from a
.308 caliber rifle, illustrating the basic acoustical elements of the gunshot [4].

The shock wave expands in a conical fashion behind the bullet, and the angle at which
the shock wave front propagates is relative to the bullet’s speed divided by the speed of sound,
a value referred to as the Mach Number [2, 3]. The higher the Mach Number, the shallower the
angle of the shock wave front is relative to the bullet’s trajectory, as depicted in Figure 2 [4]. As
the shock wave passes the microphone diaphragm, it causes a positive overpressure maximum
followed by a corresponding under-pressure minimum, which forms an “N” shape in the

waveform; this “N” shape can be seen in the Figure 1 waveforms and is provided in more detail

in Figure 3 [2].
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Figure 2 — Comparisons of the shock wave geometry for a bullet traveling at Mach 1.05 and
Mach 3 [4].
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diaphragm of a microphone [2].



Cross-Correlation Computations
Cross-correlation computations provide for a quantitative measure indicating the

similarity between two (2) signals and is defined by the following equation [5, 6]:

N-m-1

R z Xn+mYn m =0

ny(m) = n=0 (1)
Ry (—m) m <0

In equation (1), “x” and “y” refer to the input signals of sample length “N”, and “m” is the
displacement (or lag) in samples as “x” and “y” are slid over each other while the cross-
correlation computations are performed. Normalization of the output, such that the cross-
correlation value computed of a signal aligned sample-for-sample with itself (i.e.,
autocorrelation) will be +1, is achieved by dividing the output of equation (1) by the product of

the norms of “x” and “y”, as follows [5, 6]:

R\xy(m)
(Vi ++—+x2)(\HE+yE ++97)

(2)

Normalized R, (m) =

The resulting normalized cross-correlation values will be constrained between —1 and +1, with
+1 being the autocorrelation result (as indicated above) and —1 being the autocorrelation result
with one (1) of the signals being 180° out of phase. The normalized cross-correlation value will
approach 0 for two (2) signals that are completely uncorrelated (e.g., true white noise).

Koenig et al. [7] explored the application of cross-correlation computations to the
forensic analysis of recorded gunshot sounds through a collection of gunshots fired on an
outdoor firing range by five (5) firearms at four (4) different positions, relative to the locations

of nine (9) recording/sensing devices which simultaneously recorded the shots. The



recording/sensing devices ranged from consumer- to professional-grade and included law
enforcement-specific devices. Nearly all the recording/sensing systems were analog, and all
were commonly encountered by forensic audio examiners at the time that the research was
conducted. Cross-correlation computations were run, in part, for shots from the same firearm
(“cross shot”), and were compared with visual, qualitative assessments of the corresponding
waveforms. The general hierarchy given in Table 1 summarizes the correspondence of the
qualitative, visual observations of the waveforms with the quantitative cross-correlation results
for the “cross shot” events.

Table 1 — Summary of the qualitative and quantitative results from [7].

Visual Observation Average Correlation Correlation Range
Excellent 0.920 0.645-0.997
Good 0.834 0.610-0.976
Fair 0.686 0.364-0.942
Poor 0.498 0.253-0.692

As an extension to the research conducted by Koenig, et al. [7], a new set of gunshots
was recorded using digital audio recorders [16-bit pulse code modulation (PCM) encoding;
96,000 samples per second or 96 kilohertz (kHz)] and four (4) B&K model 4136 microphones
with wide frequency response (flat from 4 Hz to 70 kHz) and dynamic range [greater than 172
decibels (dB)]. The microphones were arranged in six (6) different configurations of distance

and angle, relative to the position of the firearm, as given in Table 2 [8].



Table 2 — Firearm-to-microphone distances (Range) and azimuth angles relative to the line of
fire for the six (6) firearm recording configurations [8].

Configuration Range (m) Azimuth angle (deg)
1 1.5,3,6,30 3
2 1.5,3,6,30 90
3 3 3, 30, 60, 90
4 30 3, 30, 60, 90
5 3 90, 120, 150, 180
6 30 90, 120, 150, 180

Seven (7) different firearms were utilized in [8], some firing multiple types of
ammunition, and cross-correlation computations arrived at similar results to [7]. Namely,
“successive-shot correlations with source, environment, and receiver variations held constant
are very high”, and “[c]orrelations between waveforms from different angles and different
distances are typically lower than those between successive shots.”

Limitations

An overriding observation that pervades much of the prior research conducted in the
field of recorded gunshot analysis is that there are many factors that affect the ability to answer
the common questions listed above and to otherwise draw meaningful conclusions. These
factors include, but are not limited to, the following [7-9]:

e Microphone type

e Distance between the microphone and the firearm
e Relative angle between the microphone and firearm
e Recorder settings

e Acoustical environment

e Type of firearm discharged



e Differences in ammunition
e Muzzle blast size

Because these factors affect how a gunshot is ultimately recorded, they also impact the

guantitative results that are derived from those recordings.
Research Focus

While many factors come into play when analyzing recorded gunshot sounds, such as
those listed above, this thesis focuses on how reductions in the audio bandwidth affect the
guantitative results arrived at through the application of cross-correlation. In real-world cases,
the forensic examiner does not typically have the benefit of receiving high-quality, controlled
recordings, nor multiple simultaneous recordings of the same series of events. The utilization of
a controlled database of gunshot recordings for this thesis (discussed below in the
“MATERIALS” chapter) allowed for wide flexibility regarding the production of reduced
bandwidth recordings of the same gunshot event, thereby permitting observations to be made
of cross-correlation computations as the bandwidth is reduced.

With the reduction of the recorded bandwidth comes the removal of high-frequency
components within the recorded gunshots, which is expected to lead to fewer distinctive
features between intra- and inter-firearm gunshots (i.e., the recorded gunshot sounds will
appear more alike as the bandwidth is reduced). Accordingly, the central hypotheses that were
tested for this thesis are as follows:

e Asthe bandwidth of an audio recording is decreased, the corresponding cross-

correlation results for intra-firearm comparisons will increase.



e Asthe bandwidth of an audio recording is decreased, the corresponding cross-
correlation results for inter-firearm comparisons will increase.

e The ability to statistically distinguish between recorded gunshot sounds from
different firearms may be compromised as the bandwidth of an audio recording

is decreased.



MATERIALS
Recorded Gunshot Database

The recorded gunshot database that arose from Maher and Routh [10, 11], and
subsequently made publicly available on-line [12], was used as the basis for the research
conducted for this thesis. This database was collected anechoically (i.e., without early sound
reflections) in an outdoor environment in Montana, USA, and under conditions which were
designed to be scientifically reliable and repeatable. The creation of this database was unique in
several ways, as discussed below, and provided recorded data that was tailor-made for
exploring the effect of frequency bandwidth reduction (through downsampling) on cross-
correlation computations.
Firearms and Shots

Table 3 provides a listing of the ten (10) firearm/caliber scenarios that were used during
the database collection process, with two (2) different calibers of ammunition (.38 and .357)
fired by the Ruger SP101 handgun.

Table 3 — Firearm and shot information [11, 12].

Scenario Firearm Caliber # of Shots
1 Glock 23 handgun .40 10
2 Glock 19 handgun 9mm 10
3 SIG Sauer P239 handgun .357 10
4 Colt handgun .45 10
Z Ruger SP101 handgun .:913587 190
7 Rifle .22 20
8 Rifle .308 10
9 Remington shotgun 12ga 3
10 AR14 M4 Carbine 5.56x45mm 10

TOTAL # OF SHOTS 102

10



A total of 21 shots were fired by the .22 rifle, comprised of a set of ten (10) followed by
a set of eleven (11), the latter of which was recorded with a 20-decibel (dB) amplification of the
input levels. However, the amplified recordings of shot #6 were determined to be unusable, as
they featured no discernible gunshot sounds.

Microphone Set-up

Twelve (12) GRAS Sound & Vibration A/S type 46DP microphone sets were utilized for
the capture process. Each microphone set consisted of a type 40DP 1/8" Externally Polarized
Pressure Microphone, a type 26TC %" preamplifier, and type 12AA and 12AG power modules
providing the 200-volt polarization and 120-volt preamplifier power. The microphones provided
for a £2 dB frequency response out to 140 kHz, with a dynamic range specified between 46 dB
(lower limit) and 178 dB (upper limit), resulting in an overall dynamic range of 132 dB [10].

The twelve (12) microphone sets were arranged in a semi-circular pattern along a semi-
octagonal, aluminum rig having a three-meter radius. The shooting position was located at the
center of the rig from an elevated position, and the microphone sets were positioned three (3)
meters above the ground at 0°, 16.4°, 32.7°, 49.1°, 65.5°, 81.8°, 98.2°, 114.5°, 130.9°, 147.3°,
163.6°, and 180°, relative to the angle of fire. For purposes of this paper, these angles will be
referred to as angle #1 through angle #12, respectively. Figure 4 illustrates the characteristics of
the microphone rig and the relative location of the shooting position [10], while Figure 5 shows
the marksman in the shooting position within the microphone rig during the capture process

[11].
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Figure 4 — lllustration of the microphone rig for the database collection process [10].
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Figure 5 — Image depicting the shooter positioned in the center of the microphone rig during the
database capture process [11].
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Recording Characteristics

The twelve (12) microphone channels for each shot were recorded simultaneously using
a National Instruments NI PXle-1071 chassis equipped with a NI PXle-8840 Core processor and
NI PXle-6358 data acquisition card. Each channel was recorded with 16-bit PCM encoding and
with a sampling rate of 500 kHz, providing a recorded bandwidth of 250 kHz per the Nyquist
sampling theorem [13]. The recorded audio for each shot was saved as a MATLAB data file
(“.mat”), with the twelve (12) columns in the array corresponding to the separate microphone
channels from the 0° position (column 1) to the 180° position (column 12). The data values
within the “.mat” files consist of the decimal equivalents of the 16-bit quantization values for
each audio sample, meaning that the values range from —(2%°) or —32,768 to (2%°-1) or 32,767.

The lengths of the recording from each angle of a shot was identical, but the lengths
were not identical across all the shots. The recordings were each a multiple of one (1) second,
meaning that their lengths in samples were divisible by 500,000, except for shot #8 of the SIG
Sauer P239 which has a length of 2,000,001 samples (4.000002 seconds at a sampling rate of
500 kHz). The total range of lengths across the recordings was from three (3) seconds (shot #4
of the Glock 19 handgun and shots #2 and #3 of the Ruger SP101 handgun firing .38 caliber

ammunition) to fifteen (15) seconds (shot #1 of the .308 caliber rifle).
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METHODOLOGY
General

The overall methodology devised for this thesis can be broken down into the following
phases:

1. Audio File Preparation

2. Bandwidth Reduction Through Resampling

3. Cross-Correlation Computations

4. Statistical Calculations

Audio File Preparation

Extraction of Independent Channels

The first steps for preparing the “.mat” files for use in this research were to extract each
column of data (i.e., each microphone channel) as a separate vector, normalize the vector’s
sample values to decimal values relative to the maxima of 16-bit quantization, and then save
that vector to a monaural PCM wavefile with a sampling rate of 500 kHz. With this process, a
PCM wavefile was produced for each recorded angle for each shot; for the total of 102 shots,
this equated to a total of 1,224 PCM wavefiles (12 angles per shot x 102 shots). Figure 6 and
Figure 7 show the twelve (12) time-aligned waveform displays for shot #1 of the SIG Sauer P239
(.357) and shot #1 of the .308 caliber rifle, respectively, from 0° (top) to 180° (bottom). Note in
Figure 7 that the ballistic shockwave from the supersonic bullet is seen clearly in the first three
angles as the “N”-shaped signal preceding the higher-amplitude muzzle blast. As the angle
between the direction of fire and the microphone increases, the time differential between the

ballistic shockwave and the onset of the muzzle blast decreases.
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Figure 6 — Waveform displays for shot #1 of the SIG Sauer P239 (.357) from angle 1 (0°) at the
top to angle 12 (180°) at the bottom. Normalized amplitude on the vertical axis versus seconds

on the horizontal axis, with a total displayed length of 20 milliseconds.
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Figure 7 — Waveform displays for shot #1 of the .308 caliber rifle from angle 1 (0°) at the top to
angle 12 (180°) at the bottom. Normalized amplitude on the vertical axis versus seconds on the
horizontal axis, with a total displayed length of 20 milliseconds.

16



Direct Current Offset Removal

Direct current (DC) offset can occur in an audio recording when one (1) or more
components (e.g., microphone, microphone preamplifier) induce DC voltage into the audio
signal, manifesting itself as a vertical shift of the audio samples away from the x-axis [14, 15].
From review and measurement of the waveforms extracted from the source “.mat” files, it was
discovered that the DC offsets of the recorded signals varied across the microphones, with the
signals recorded at angles 9 through 12 exhibiting the largest offsets in the order of —300
guantization levels at 16-bit, or 0.9%. While this percentage may not be large, the cross-
correlation results will be affected by the presence of the DC offset. Cross-correlation
computations are immune to a scalar change of amplitude across the sample values (e.g.,
reducing the amplitude of an entire signal by a fixed value), but shifting the DC offset of one (1)
of the signals will reduce the maximum computed cross-correlation value, especially when the
overall amplitudes are lower.

To exemplify this, consider Signal X (monaural, 16-bit PCM, 8 kHz sampling rate, one-
second length) which is created by frequency modulating a 60 Hz sine wave with white noise,
both with peak amplitudes of —40 dB. Signal Y is created by shifting Signal X by —300
guantization levels. By definition, the autocorrelation of Signal X results in a value of +1 at lag 0
(i.e., Signal X is aligned sample-for-sample with itself when the cross-correlation computation is
run). A cross-correlation computation is then run of Signals X and Y, and the result is +0.70108
at a lag of 0. The presence of DC offset reduced the maximum cross-correlation value from +1
to +0.70108. Figure 8 summarizes this example and includes graphs of the cross-correlation

values versus lag values from =50 to +50.
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Figure 8 — Waveforms of signals X and Y, where Y is equal to X but with a =300 quantization
level shift. The cross-correlation values for X/X and X/Y from lags —50 to +50 are given. The
maximum cross-correlation value (at lag 0) dropped from +1 to +0.70108 with the introduction
of DC offset.

Because of the negative impact that the presence of DC offset can have on the cross-
correlation computations and the fact that DC offset is a channel artifact that does not convey
any signal-dependent information, the wavefiles extracted from the “.mat” files were each
processed to remove any DC offset present in them by performing mean subtraction and saving
the results separately as new wavefiles. Mean subtraction was conducted in MATLAB R2019b
using the following command, where “x” is the input signal, “xpc” is the DC-corrected signal,

and “n” is the total number of samples in “x”:

Xpc = x — mean(x) (3)
mean(x) = ﬁ (4)
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Bandwidth Reduction Through Resampling

The DC offset-corrected wavefiles were downsampled from their native 500 kHz to the
following sampling rates, which are all factors of 500 kHz: 250 kHz, 125 kHz, 62.5 kHz, 31.25
kHz, and 15.625 kHz. Additional downsampled wavefiles were produced at the following
sampling rates, which are commonly used in professional and consumer recording systems:
192 kHz, 96 kHz, 88.2 kHz, 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 12 kHz, 11.025
kHz, and 8 kHz. In total, seventeen (17) sets of downsampled wavefiles were produced for each
firearm/shot/angle recording.

The resampling processes were performed using the “resamp” function within MATLAB
R2019b. The basic syntax for the “resamp” function is as follows [16]:

y = resamp(x,p, q[,n]) (5)

o, .n

y” is the resampled output signal, “x” is the input signal, “p/q” is the factor by which the signal
is resampled. “n” is an optional variable that affects the order of the antialiasing finite impulse
response (FIR) lowpass filter (utilizing Kaiser windowing) employed during the resampling
process, as follows [16, 17]:

Filter order = 2 X n X [max(p, q)] (6)
Generally, “p” is the value of the output file’s sampling rate, and “q” is the value of the input
file’s sampling rate; however, any values which satisfy the same ratio can be used. For example,
to downsample a 500 kHz signal (x) to a 250 kHz signal (y), either of the following functions
could be used:
y = resamp(x,250000,500000) (7)

y = resamp(x,1,2) (8)
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For the resampling processes performed in this research, the source signals were always the
native 500 kHz DC-corrected wavefiles, meaning that the value of “q” was always 500,000. The
default value of “n” in MATLAB R2019b is ten (10), and that value was utilized for this research
[16].

Downsampling the DC-corrected, 500 kHz recordings was chosen as the process for
bandwidth reduction in lieu of applying a lowpass filter. This decision was made primarily to
expedite the subsequent cross-correlation computation processes. With lowpass filtering, the
sampling rate of the files would remain at 500 kHz, even though the bandwidth of the recorded
signal would be bandlimited; lowpass-filtered files would have required a greater number of
cross-correlation computations compared to a downsampled version of the same file. As
indicated above, the downsampling process inherently includes an antialiasing lowpass filter,
but the resulting files do not contain the extraneous data between the cut-off frequency of the
lowpass-filtered version and the original Nyquist frequency (250 kHz).

Cross-Correlation Computations

Cross-correlation computations were run of all shots within each firearm within each
angle (intra-firearm, intra-angle) and for all shots across firearms within each angle (inter-
firearm, intra-angle), with the process being repeated for each sampling rate from 500 kHz
down to 8 kHz. For example, the three (3) recorded shots from the Remington 12-gauge
shotgun were cross-correlated to each other within each angle and for each sampling rate, and
then were cross-correlated with the other nine (9) firearm/caliber scenarios within each angle
and for each sampling rate. No inter-angle cross-correlations were considered for this research;

inter-angle comparisons have been shown to result in lower cross-correlation values and
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greater variance because of “[a]ngular dependence on blast size, internal ballistics, non-linear
spreading, and ground reflections” [8].

For a given number of recorded shots (n), the formula for the number of pairs of unique
intra-firearm combinations (i.e., n items taken two at a time with no repetitions) for each

firearm (Tintra) is as follows [18]:

n n! n!
Tintra = (2) T 2Am=2) 2(n-_2)

9
These combinations exclude the autocorrelations, which are the cross-correlations of each
shot/angle recording with itself. The total number of unique, inter-firearm comparisons (Tinter)
at each angle/sampling rate is given as the following, where 102 is the total number of shots in
this study and “n” is the number of shots from the individual firearm (see Table 3):

Tinter = n(102 —n) (10)
Hence, the total number of comparisons for each firearm at each angle/sampling rate
(Tfirearm_angle) is the sum of Tinwrg and Tinter, and the total number of comparisons for each firearm
across all angles (Tfirearm_all_angles) for a given sampling rate is 12 times Tfirearm_angle. Lastly, the

total number of comparisons for each firearm across all angles and across all sampling rates

(Tfirearm_total) is 18 times Tfirearm_ail_angles-
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Table 4 — Summary of the number of cross-correlation computations made successively for each
firearm at each angle (Tfirearm_angle), across all angles (Tfirearm_ail_angles), and the total across all
sampling rates (Tfirearm_total).

Firearm #S(I:;;ts Tintra Tinter Tfirearm_angle Tﬁrearm_all_ angles Tfireurm_total
Glock 23 handgun 10 45 920 965 11,580 208,440
Glock 19 handgun 10 45 920 965 11,580 208,440
SIG Sauer P239 handgun 10 45 920 965 11,580 208,440
Colt handgun 10 45 920 965 11,580 208,440
Ruger SP101 handgun (.357) 10 45 920 965 11,580 208,440
Ruger SP101 handgun (.38) 9 36 837 873 10,476 188,568
Rifle (.22) 20 190 1,640 1,830 21,960 395,280
Rifle (.308) 10 45 920 965 11,580 208,440
Remington shotgun 3 3 297 300 3,600 64,800
AR14 M4 Carbine 10 45 920 965 11,580 208,440
TOTALS 102 544 | 9,214 9,758 117,096 2,107,728

The cross-correlation computations were made using the “xcorr” function within
MATLAB R2019b. The basic syntax for the “xcorr” function utilized in this research was as
follows [5]:

CC = xcorr(a,b,’ coeff") (11)
“a” and “b” are the input wavefiles for the cross-correlation analysis, and “CC” is the output
array containing the results of the computations. “coeff” refers to the method of normalization
which results in the values being scaled between —1 and +1, where +1 is the autocorrelation of
a signal with itself at lag 0 and —1 would be the same but with the phase of one (1) of the input
signals inverted.

Normalization of the results is optional, but when a method is specified, the input
signals must be of the same length. Accordingly, because the recordings in the database were
not all of the same length, the maximum length of the recordings within a given set of

computations was first determined, and any recordings within that set which were shorter than
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that maximum length were zero-padded with the appropriate number of samples. The cross-
correlation computations were then carried out with pairs of files having the same length.
From the output array (“CC”) of a given pair of wavefiles, the maximum positive cross-
correlation value was identified and documented in a spreadsheet for each angle and for each
sampling rate. Additionally, the corresponding lag positions for the maximum positive cross-
correlation values were similarly documented in a separate set of spreadsheets by angle and
sampling rate. As example sets of cross-correlation comparisons, Figure 9 displays the 500 kHz
and 8 kHz intra-firearm comparisons of shot #1 with shot #2 for the 12-gauge shotgun at angle
1 (0°), aligned at the lag values which resulted in the maximum cross-correlation values and
shown with a time range of twenty (20) milliseconds (i.e., 10,000 samples at 500 kHz, 160
samples at 8 kHz). Similarly, Figure 10 and Figure 11 display the same data for the shot #1/shot
#3 and shot #2/shot #3 comparisons, respectively. The ground reflection in each waveform is
present approximately eleven (11) milliseconds (i.e., 5,500 samples at 500 kHz, 88 samples at 8

kHz) following the onset of the respective muzzle blast.

23



"10/d Yopa Jo 3111 Y3 Ul Papinoid 3o SaN|BA Y10q UoSLIPAWOI 3A1123dSaJ 3yl 40 an|pA UOIID[3410I
-§50.42 WNWIXpW 3y ul paifnsal yarym an|pa boj ayl 10 paubiip 1o SWI0JIADA Sa1o. buiidwos (1ybli) zHy 8 pup (1f3]) zHY
006 3Y1 1o unbioys abnpb-zT 3yl Jo (,0) T 31bup J0f Z# PUD T# SI0YS J0f SUOSLIDAWOI UOIID|3JI0I-SSOID WIDAIL-p43Ul Y| — 6 24nbiI4

o (so|dwes) awi | o (se|dwes) awi)

s8L1 88zl voLt EEI st 8L saLt [ oLk oL 'L L1 z01L L L 6801 8801 601 9601

(pezijewwiou) apnyijdwy
(pazijewou) apnyduwiy

[6092=Be| ‘20996'0=00 Xew] (zH) 8) Z ‘SA L Joys ~ [evssLp=be| ‘'§9256'0=00 Xew] (zH) 005) Z ‘SA | 10U

24




"101d Yapa Jo 3/111 Y1 Ul papinoid a1p sanjpbA Yyloqg UosIIDAdWO0I 3A123dS3aJ 3y 10f aN|DA UOIID|I110I
-$5042 wWnwixpw ayj ul paiinsal yarym anjpa boj ayi 1o paubiip 3o swiofanpp) "saoJ bulidwos (1ybli) zHy 8 pup (1)) ZHY 005
ay1 1o unbioys abnob-zT ay1 Jo (,0) T 3|bup J0f E# pub T# S10Ys 10 SUOSLIDAWOD UOIID|3410I-5S04D WIDAIL[-DIuUl dY | — QT 34nbiH

o (so|dwes) awi | o (se|dwes) awi)

S0z 1 voz'L 202k zi 8611 EIe veLl z6L1 L B e 52 52 ori Br e e By sve

(pezijewwiou) apnyijdwy
(pazijewou) apnyduwiy

[62z¢1=6®| ‘6L056'0=00 Xew] (zHX 8) £ 'SA L JOUS * [9629z8=b%| '892£60=00 Xew] (zH) 005) € ‘SA | JoUSs

25




"10/d Yop3 Jo 3]311 Y3 Ul papinoid a1p san|pA Y10q UosLIDAWO0 IN1123dsaJ dY1 40f aN|DA UOIID[3J10D
-§S0.42 WNWIXoW 3y Ul painsal yarym anjpa boj aya 1o paubijp 310 SWI0fonbAA "sa1o4 buldwps (1ybii) zHy 8 pup (1f3]) ZH) 005
ay1 1o unbjoys abnob-zT ayi o (,0) T 3jbub Jof € pup Z# SI0YS J0f SUOSLIDAWOI UOIID|IJI0I-SSOID WIDAILf-pJ3ul 3Y | — TT 34nbi4

o (so|dwes) awi | o (se|dwes) awi)

S0z 1 voz'L 202k zi 8611 EIe veLl z6L1 L B e 52 52 ori Br e e By sve

(pezijewwiou) apnyijdwy
(pazijewou) apnyduwiy

[0z95=Be| ‘Pp5.6'0=00 Xew] (zH) 8) £ ‘SA ZIOUS  [¥zi5e=be| ‘Pz56'0=00 Xew] (zHM 00S) € "SA Z 10US

26




Statistical Calculations

Using the maximum cross-correlation value spreadsheets, averages and standard
deviation values were calculated for all intra-firearm/intra-angle comparisons and all inter-
firearm/intra-angle comparisons.

For example, average and standard deviation values were calculated for the set
containing all the maximum cross-correlation values for shots #1 through #3 of the Remington
12-gauge shotgun for all intra-angle comparisons (e.g., shots #1 and #2 at angle 1, shots #1 and
#3 at angle 1, shots #2 and #3 at angle 1, shots #1 and #2 at angle 2, ..., shots #2 and #3 at angle
12). From Table 4, there were three (3) intra-angle comparisons made for the Remington 12-
gauge shotgun for each angle, or a total of 36 comparisons across the twelve (12) angles.
Following that, similar average and standard deviation calculations were calculated for
Remington 12-gauge shotgun shots #1 through #3 against all the intra-angle comparisons made
with the other firearms. Again from Table 4, there were 297 inter-angle comparisons made for
the Remington 12-gauge shotgun for each angle, or a total of 3,564 comparisons across the

twelve (12) angles.
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RESULTS

Table 5 and Table 6 list the computed averages and standard deviations for the

maximum cross-correlation values from the intra-firearm comparisons for sampling rates 500

kHz to 44.1 kHz and 32 kHz to 8 kHz, respectively. The results are listed by firearm and for a set

containing all firearms. Similarly, Table 7 and Table 8 list the same computations for the inter-

firearm comparisons.

The following figures display the average maximum cross-correlation values versus

sampling rate plots for the intra-firearm/intra-angle (solid blue) and inter-firearm/intra-angle

(dashed orange) comparisons, as detailed below:

Figure 12 — for all firearms

Figure 13 — for the Remington 12-gauge shotgun

Figure 14 —for the .22 caliber rifle

Figure 15 — for the .308 caliber rifle

Figure 16 — for the AR14 M4 Carbine

Figure 17 — for the Colt handgun

Figure 18 —for the Glock 19 handgun

Figure 19 —for the Glock 23 handgun

Figure 20 — for the Ruger SP101 handgun (firing .357 caliber ammunition)
Figure 21 — for the Ruger SP101 handgun (firing .38 caliber ammunition)

Figure 22 — for the SIG Sauer P239 handgun

Standard deviation bars are provided for each data point and are colored accordingly (blue for

the intra-firearm data points and orange for the inter-firearm data points). The intra-firearm
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standard deviation bars are capped with an arrow, while the inter-firearm standard deviation
bars are capped with a solid oval, to more easily distinguish the bars that overlap.
The percent changes for each set of sampling rates related by sequential, downward
octaves (i.e., halving of the sampling rate) for all firearms are given in the following figures for
both intra- and inter-firearm comparisons:
e Figure 23 —for sampling rates 500 kHz down to 15.625 kHz
e Figure 24 — for sampling rates 192 kHz down to 12 kHz
e Figure 25 — for sampling rates 88.2 kHz down to 11.025 kHz
e Figure 26 — for sampling rates 32 kHz down to 8 kHz

These percent change values were calculated per the following equation:

AvgMaxCC — AvgMaxCC
% change = g (SR/2) g (SR)

X 1009 12
AvgMaxCCsp & (12)

“AvgMaxCCsg” is the average maximum cross-correlation value at a given sampling rate (“SR”),
and “AvgMaxCCsr/2)” is the average maximum cross-correlation value at half the given sampling
rate (i.e., one octave down). The average maximum cross-correlation values are taken from the
“All” rows of Table 5 through Table 8. For example, the percent change for the average
maximum cross-correlation values from 500 kHz to 250 kHz for the intra-firearm comparisons
was calculated as follows (average maximum cross-correlation values taken from Table 5):

AvgMaxCCys0 kpz) — AvgMaxCCs0 knz)
AvgMaxCCsog krz)

% change = X 100% =

0.6790 — 0.5989
0.5989

X 100% = 13.37% (13)
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Lastly, the percent changes per kHz for each successive sampling rate interval were

calculated for all firearms (intra- and inter-firearm comparisons separately) as follows:

AvgMaxCCspyy — AvgMaxCCggy)
% change ( AvgMaxCCspy
= 0,
kHz SRL — SR2 x 100% a4

“AvgMaxCCsr1” is the starting average maximum cross-correlation value at a given sampling
rate (“SR1”, in kHz), and “AvgMaxCCsg,” is the average maximum cross-correlation value at the
ending sampling rate (“SR2”, in kHz). As with equation (12) above, the average maximum cross-
correlation values are taken from the “All” rows of Table 5 through Table 8. For example, the
percent change per kHz for the intra-firearm, 500 kHz (“SR1”) to 250 kHz (“SR2”) interval

comparison was derived as follows:

o (AngaXCCIElzsoj‘c;z) ECAngaXCC(SOO kHz))
o change vgmax
kHZg = 9500 50 X 100% =
(0.67%05;5?9.5989) %
'250 X 100% = 0.053 Tz

(15)
The percent change per kHz results are given in Figure 27 (intra-firearm comparisons) and

Figure 28 (inter-firearm comparisons).
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CONCLUSIONS

The results of the research conducted for this thesis support the hypotheses that as the
bandwidth of an audio recording is decreased, the corresponding maximum cross-correlation
values will increase for both intra- and inter-firearm comparisons.

Except for the transition from 16 kHz to 8 kHz for the intra-firearm condition, all the
percent changes in the average maximum cross-correlation computations for the octave-
interval results were positive (see Figure 23, Figure 24, Figure 25, and Figure 26). The greatest
percent change was observed in the 500 kHz to 250 kHz transition for both intra- and inter-
firearm comparisons. The percent changes generally decreased as the sampling rates
decreased; however, there were two (2) instances in the inter-firearm percent changes where
successive values slightly increased (from 2.12% to 2.32% for the transition between 96 kHz/48
kHz and 48 kHz/24 kHz, and from 1.92% to 2.33% for the transition between 88.2 kHz/44.1 kHz
and 44.1 kHz/22.05 kHz).

The results of the successive sampling rate percent changes per kHz revealed positive
results for all the intra- and inter-firearm comparison intervals, except for the last two (2)
transitions of the intra-firearm results (—-0.005%/kHz for the 12 kHz/11.025 kHz transition and
—0.081%/kHz for the 11.025 kHz to 8 kHz transition). Both the intra- and inter-firearm results
exhibit a noticeable peak at the 44.1 kHz to 32 kHz transition, the reason for which is not readily
apparent.

As indicated above in the “Research Focus section”, the primary reason for the increases
in the maximum cross-correlation values is likely the systematic removal of the high-frequency

variations in the recorded gunshots as the sampling rate (and therefore, bandwidth) is reduced.
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The cumulative effect of the differences in these high-frequency variations results in minor but
qguantified differences in the corresponding cross-correlation values.

For the individual firearm computations, the only firearm which exhibited a clear
separation between the intra- and inter-firearm plots of the average maximum cross-
correlation values (i.e., no overlap of their standard deviation ranges) was the Remington 12-
gauge shotgun (see Figure 13). The intra- and inter-firearm plots for all other individual firearms
and for the set of all firearms overlap within one (1) standard deviation. The mechanisms by
which the shotgun discharges and the differences in its ammunition type, relative to the
handguns and rifles, likely led to its shots being more distinctive among the set of tested
firearms.

It was noted that the intra-firearm results for the .22 caliber rifle never exceeded 0.6
(not including the standard deviation range), which was relatively poor compared to the other
firearms which always exceeded 0.7. Similarly, the inter-firearm results for the .22 caliber rifle
were lower overall than the other firearms’ results, with the maximum being 0.3239 at 8 kHz;
whereas the other firearms ranged from 0.4572 (Remington 12-gauge shotgun) to 0.6963
(Glock 19) for the inter-firearm results at 8 kHz. These results may have resulted from the
inclusion of the initial set of ten (10) shots from the .22 caliber rifle, which exhibited poorer
signal-to-noise than the subsequent set of eleven (11) shots with the 20-dB amplification.

The standard deviation ranges for the intra-firearm computations for all firearms
generally decreased as the sampling rate decreased, with the .22 caliber rifle and Remington
12-gauge shotgun exhibiting the lowest rates of change. For the inter-firearm computations,

the differences in the standard deviation ranges also decreased but were not as significant as
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the intra-firearm results, which may be due to the inclusion of different firearm classes (e.g.,
handguns, rifles, shotgun) in the test set.

The hypothesis regarding the decreases in bandwidth compromising the ability to
statistically distinguish between recorded gunshot sounds from different firearms is not
supported by the data in this research. As observed in Figure 12 through Figure 22, the overlaps
in the intra- and inter-firearm plots and their standard deviation ranges generally decrease as
the sampling rate/bandwidth decreases, indicating that discrimination between the two sets

(intra and inter) becomes greater.
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FUTURE RESEARCH

As noted above, this research utilized high-quality recordings in a controlled
environment; hence, conducting the same or similar research using recordings captured in non-
anechoic but semi-controlled conditions (e.g., same microphone rig) and/or “real world” cases
with known circumstances would likely shed more light on the results in conditions commonly
encountered by forensic audio examiners. A simple, intra-firearm case example with known
circumstances is presented in the Appendix.

Producing similar databases of controlled recordings using a wider array of
firearms/ammunition would also improve the breadth of the data presently available and
enable more detailed comparisons between firearm classes and specific models/ammunition.

The effects of bandwidth reduction on other quantitative measures, such as mean
guadratic difference, and utilizing power data in lieu of waveforms in the same workflow could

also be explored.
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APPENDIX
Case Example

As a simple case example, fourteen (14) shots were fired from a handgun (Glock 22, .40
caliber) in an outdoor environment at night, near a microphone mounted within a law
enforcement vehicle. The microphone signal was recorded onto one channel of the hi-fi stereo
audio track of a VHS tape-based dashboard camera recording system. The individual firing the
handgun was panning slightly from their left to right over the first ten (10) shots but was
relatively still for the last four (4) shots, as observed in the video recording of a second
dashboard camera recording system. Figure 29 displays the waveforms for these last four (4)
recorded shots, as digitized at a sampling rate of 44.1 kHz from the VHS hi-fi audio track.

The methodology described in this thesis was applied to these last four (4) shots, each
segmented into separate 175-millisecond WAV files, with the downsampling processes
performed using the DC offset-corrected, 44.1 kHz digitized file segments. The results are
provided in Table 9 and are displayed graphically in Figure 30. Additionally, the percent changes
per kHz in the average maximum cross-correlation values are shown in Figure 31.

Table 9 — Average maximum cross-correlation values and their corresponding standard

deviation values for the four (4) recorded gunshots in the case example for sampling rates 44.1,
32, 31.25, 24, 22.05, 16, 15.625, 12, 11.025, and 8 kHz.

(]

=}

g Sampling Rate (kHz)

O

O

s

= 44.1 32 31.25 24 22.05 16 15.625 12 11.025 8
AVG 0.7175 | 0.7174 | 0.7176 | 0.7171 | 0.7176 | 0.7165 | 0.7165 | 0.7203 | 0.7191 | 0.7237
SD 0.1356 | 0.1356 | 0.1358 | 0.1355 | 0.1361 | 0.1345 | 0.1346 | 0.1366 | 0.1342 | 0.1346
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From this case example, it is evident that bandwidth reduction had little impact on the
average maximum cross-correlation values and corresponding standard deviations, but the
results are generally consistent with those obtained from the controlled database recordings
utilized in this research for the same 44.1 kHz to 8 kHz range (see Table 5 and Table 6 and the
corresponding figures).

Both the average and standard deviation values from the case example were highly
consistent across the sampling rates, with the overall average/standard deviation range being
0.7183+0.1353. The corresponding percent change per kHz results oscillated above and below
0%/kHz, with the values for the lowest sampling rate transitions (15.625 kHz/12 kHz, 12
kHz/11.025 kHz, and 11.025 kHz/8 kHz) having the greatest deviations.

As a general observation, the waveforms of the recorded gunshots in this case example
(Figure 29) are noticeably different than those captured in the controlled database (as
exemplified in Figure 9 through Figure 11). Whereas the controlled database recordings exhibit
quick acoustic decay and return to the ambient noise level within approximately eleven (11)
milliseconds, the recordings in the case example have much longer acoustic decay patterns and
more complex signatures following the onset of the muzzle blasts. These differences are due in
large part to the effects of the non-optimal microphone and recording system employed in the

dashboard recording system.
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